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Density of the Fisher Zeroes for the Ising Model
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The density of the Fisher zeroes, or zeroes of the partition function in the com-
plex temperature plane, is determined for the Ising model in zero field as well
as in a pure imaginary field i?�2. Results are given for the simple-quartic,
triangular, honeycomb, and the kagome� lattices. It is found that the density
diverges logarithmically at points along its loci in appropriate variables.
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1. INTRODUCTION

In the analyses of lattice models in statistical mechanics such as the Ising
model, the partition function is often expressed in the form of a polynomial
in variables such as the external magnetic field and�or the temperature.
Since properties of a polynomial are completely determined by its roots,
a knowledge of the zeroes of the partition function yields all thermodynamic
properties of the system. Particularly, if the zeroes lie on a certain locus,
a knowledge of its density distribution along the locus is equivalent to the
obtaining of the exact solution of the problem.

For the Ising model with ferromagnetic interactions, we have the
remarkable Yang�Lee circle theorem(1, 2) which states that all partition
function zeroes lie on the unit circle |z|=1 in the complex z=e2L plane,
where L is the reduced external magnetic field (we set kT=1). However,
the density of the Yang�Lee zeroes on the unit circle, a knowledge of which
is equivalent to solving the Ising model in a nonzero magnetic field, is
known only for the Ising model in one dimension.

Fisher(3) has proposed that it is also meaningful to consider partition
function zeroes in the complex temperature plane. Indeed, he showed that
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for the zero-field Ising model on the simple-quartic lattice with nearest-
neighbor reduced interactions K, the partition function zeroes lie on two
circles

|tanh K\1|=- 2 (1)

in the thermodynamic limit. He further showed that the known logarithmic
singularity of the specific heat follows from the fact that the density
vanishes linearly near the real axis. Subsequently, the Fisher loci has been
determined for the infinite triangular lattice, (4) and for finite simple-quartic
lattices which are self-dual.(5) Stephenson(6, 7) has also evaluated the density
distribution on the circles in terms of a Jacobian. However, the explicit
expressions of the density function of the Fisher zeroes do not appear to
have been heretofore evaluated.

In this paper we complete the picture by evaluating the density func-
tion. We deduce the explicit expressions for the density of Fisher zeroes for
the simple-quartic, triangular, honeycomb, and kagome� lattices. Density of
the Fisher zeroes for the Ising model in a pure imaginary field L=i?�2 are
also obtained.

2. THE SIMPLE-QUARTIC LATTICE

It is well-known that the bulk solution of spin models with short-range
interactions is independent of the boundary conditions. For the Ising
model on the simple-quartic lattice, we shall take a particular boundary
condition introduced by Brascamp and Kunz(8) for which the location of
the Fisher zeroes is known for any finite lattice. This permits us to take a
a well-defined and unique bulk limit, thus avoiding a difficulty encountered
in the consideration of the Ising model on a torus.(6)

Consider an M_2N simple-quartic lattice with cylindrical boundary
conditions in the N direction and fixed boundary conditions along the two
edges of the cylinder. The 2N boundary spins on each of the two edges of
the cylinder have fixed fields } } } ++++++ } } } and } } } +&+&+& } } } ,
respectively. This is the Brascamp�Kunz boundary condition.(8) Brascamp
and Kunz showed that the partition function of this Ising model is
precisely

ZM, 2N(K )=22MN `
1�i�N

`
1� j�M

[1+z2&z(cos % i+cos ,j )] (2)

where

z=sinh 2K, %i=(2i&1) ?�2N, ,j= j?�(M+1) (3)
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The per-site ``free energy'' in the bulk limit is then evaluated as

f = lim
M, N � �

1
2MN

ln ZM, 2N(K )

=
1
2

ln(4z)+
1

8?2 |
?

&?
d% |

?

&?
d, ln[z+z&1&(cos %+cos ,)]

=
1
2

ln(4z)+
1

2?2 |
?

0
d% |

?

0
d, ln[z+z&1&2 cos u cos v] (4)

where u=(%+,)�2, v=(%&,)�2 and we have made use of the fact that the
integrands are 2?-periodic.

The partition function (2) has zeroes at the 2MN solutions of

z+z&1=cos % i+cos ,j , 1�i�N, 1� j�M (5)

The following lemma and corollaries are now used to determine the loci of
the zeroes:

Lemma. The regime &2�z+z&1�2 of the complex z plane,
where z+z&1=real, is the unit circle |z|=1.

Proof. The lemma follows from the fact that, by writing z=rei%, we
have

z+z&1=\r+
1
r+ cos %+i \r&

1
r+ sin % (6)

so that z+z&1=real implies either r=1 or %=integer_?. In the latter
case we have |z+z&1|= |r+r&1|>2, which contradicts the assumption,
unless r=1. It follows that we have always r=1, or |z|=1. K

Corollary 1. The regime &a�z+z&1�b, where a, b>2, z+z&1

=real, of the complex z plane is the union of the unit circle |z|=1 and
segments z&(&a)�x�z+(&a) and z&(b)�x�z+(b) of the real axis,
where z\(b)=(b\- b2&4)�2.

Corollary 2. The regime &a�z+z&1�b, where a, b>2, z+z&1

=real, of the complex z plane, is the regime |w|=1 in the complex w
plane, where w is the solution of the equation

w+w&1=
4

a+b \z+z&1+
a&b

2 + (7)
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Corollary 1 is established along the same line as in the proof of the lemma,
and Corollary 2 is a consequence of the lemma since, by construction, we
have &2�w+w&1�2.

Returning to the partition function (2), since the right-hand side of (5)
is real and lies in [&2, 2], it follows from the Lemma that the 2MN zeroes
of (2) all lie on the unit circle |sinh 2K |=1, a result which can also be
obtained by simply setting the argument of the logarithm in the bulk free
energy (4) equal to zero. The usefulness of this simplified procedure has
been pointed out by Stephenson and Couzens(4) for the Ising model on a
torus. But since the zeroes are not easily determined in that case when the
lattice is finite, they termed the argument as ``hand-waving.'' Here, the
argument is made rigorous by the use of the Brascamp�Kunz boundary
condition. From here on, therefore, We shall adopt the simpler approach
in all subsequent considerations.

We now proceed to determine the density of the zero distribution. Let
the number of zeroes in the interval [:, :+d:] be 2MNg(:) d: such that

|
2?

0
g(:) d:=1 (8)

and

f = 1
2 ln(4z)+|

2?

0
d: g(:) ln(z&ei:) (9)

It is more convenient to consider the function R(:)=�:
0 g(x) dx where

2MNR(:) gives the total number of zeroes in the interval [0, :] such that

g(:)=
d

d:
R(:) (10)

On the circle |z|=1 writing z=ei: and setting the argument of the
logarithm in the third line of (4) equal to zero, we find : determined by

cos :=cos u cos v, 0�[u, v]�? (11)

Now if :i is a solution, so are &:i and ?&:i , hence we have the symmetry

g(:)= g(&:)= g(?&:) (12)

It is therefore sufficient to consider only 0�[:, u, v]�?�2.
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The constant-: contours of (11) are constructed in Fig. 1a and are
seen to be symmetric about the lines u, v=\?�2 in each of the 4 quad-
rants. Now from (3) we see that zeroes are distributed uniformly in the
[%, ,]-, and hence the [u, v]-plane. It follows that R(:) is precisely the
area of the region

cos :>cos u cos v, 0�[:, u, v]�?�2 (13)

normalized to R(?�2)=1�4. This leads to the expression

R(:)=
1
?2 |

:

0
cos&1 \cos :

cos x+ dx (14)

Using (10) and after some reduction, we obtain the following explicit
expression for the density of zeroes,

g(:)=R$(:)=
|sin :|

?2 K(sin :) (15)

where K(k)=�?�2
0 dt(1&k2 sin2 t)&1�2 is the complete elliptic integral of the

first kind. The density (15), which possesses an unexpected logarithmic
divergence at :=\?�2, is plotted in Fig. 2a. For small :, we have g(:)r

|:|�2?. As pointed out by Fisher,(3) it is this linear behavior at small :
which leads to the logarithmic divergence of the specific heat.

Fig. 1. Constant-: contours in the u-v plane. (a) The contour (11) for the simple-quartic
lattice. Straight lines correspond to :=?�2. (b) The contour (23) for the triangular lattice.
Broken lines correspond to :=2 cos&1(1�3).
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Fig. 2. Density of partition function zeroes for the simple-quartic lattice. (a) g(:) given
by (15). (b) g+(%) given by (19).

We can also deduce the density of zeroes on the two Fisher circles (1)
which we write as

tanh K\1=- 2 ei% (16)

The angles : and % are related by,

ei:=\\- 2�e&i%

- 2�ei% + (17)

so that the mapping from : to % is 1 to 2. This leads to the result

g(%)=
g(:)

2 } d:
d% } (18)

Let the density of zeroes be g\(%) for the two circles (16). Then, using
(17) we find

g+(%)=g&(?&%)=\ k
?2+ } 1&- 2 cos %

3&2 - 2 cos % } K(k) (19)

where

k=
2 |sin %| (- 2&cos %)

3&2 - 2 cos %
(20)
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The density (19) is plotted as Fig. 2b. Note that the divergence in the
density distribution in (15) on the unit circle is removed in (19) for the two
Fisher circles. This is due to the fact that d:�d% vanishes linearly at :=
\?�2. We have also g+(?�4)= g&(3?�4)=0, and for small % we find

g\(%)=\3\2 - 2
? + |%| (21)

Here, again, the linear behavior of g+(%) at %=0 leads to the logarithmic
singularity of the specific heat.

It is also of interest to consider zeroes of the Ising model in the Potts
variable x=(e2K&1)�- 2. In the complex x plane it is known(9) that the
partition function zeroes are on two unit circles centered at x=1 and
x=&- 2. We find the density along the two circles to be, respectively,
g&(%) and g+(%).

3. THE TRIANGULAR LATTICE

For the triangular Ising model with nearest-neighbor interactions K,
the free energy assumes the form(10, 11)

f =C+
1

8?2 |
?

&?
d% |

?

&?
d, ln[z+z&1+1&[cos %+cos ,+cos(%+,)]]

=C+
1

2?2 |
?

0
du |

?

0
dv ln[z+z&1+2&2 cos u(cos u+cos v)] (22)

where C=[ln(4z)]�2, z=(e4K&1)�2, and we have introduced variables
u=(%+,)�2, v=(%&,)�2. Now the value of the sum of the three cosines
in (22) lies between &3�2 and 3. It then follows from Corollary 1 that in
the complex z plane the zeroes lie on the union of the unit circle |z|=1 and
the line segment [&2, &1�2] of the real axis, a result first obtained by
Stephenson and Couzens.(4)

The density of the zero distribution can now be computed in the same
manner as described in the preceding section. For z on the unit circle we
write z=ei:. Then : is determined by

cos :=&1+cos u(cos u+cos v), 0�[u, v]�? (23)

and R(:) is the area of the region

cos :> &1+cos u(cos u+cos v) (24)
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Clearly, we have the symmetry gcir(:)= gcir(?&:) and we need only to
consider 0�:�?. From a consideration of the constant-: contours of (23)
shown in Fig. 1b, we obtain after some algebra the result

gcir(:)=
|sin :|

?2
- A(:)

K(k) (25)

where A(:)=(5+4 cos :)1�2 and

k2=F[A(:)]
(26)

F(x)#
1

16 \
3
x

&1+ (1+x)3

Particularly, for small :, we find gcir(:)r |:|�2 - 3 ?.
In a similar fashion we find, on the line segment z # [&2, &1�2], we

write z=&e* and obtain

gline(*)=
|sinh *|

?2k - B(*)
K(k&1), &ln 2�*�ln 2 (27)

where B(*)=[5&4 cosh *]1�2 and

k2=F[B(*)] (28)

While the density of zeroes is everywhere finite, the logarithmic divergence
is recovered if the zeroes are all mapped onto a unit circle (see (38) below).
Specifically, we have gcir(?)= gline(0)=0, and gline(\ln 2)=- 3�2?. The
densities (25) and (27) are plotted in Fig. 3.

Fig. 3. Density of partition function zeroes for the triangular lattice. (a) gcir(:) given by (25).
(b) gline(z) given by (27).
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Matveev and Shrock(18) have discussed zeroes of the triangular Ising
model in the complex u=e&4K plane, for which the zeroes are distributed
on the union of the circle

u= 1
3 (2ei:&1), &?<:�? (29)

and the line segment

&�<u�& 1
3 (30)

Using our results we find the respective densities

gcir(:)=
|sin ,|

9?2 [C(:)]7�2 K(k) (31)

where C(:)=3(5&4 cos ,)&1�2, k2=F[C(:)], and

gline(u)= } (1+u)(1&3u)

4?2u2(1&u)2 k - D(u) } K(k&1) (32)

where D(u)=- (1+3u)�u(1&u) and k2=F[D(u)]. At the end point we
have gline(&1�3)=9 - 3�8?.

The density of zeroes assumes a simpler form if we use Corollary 2 to
map all zeroes onto a unit circle in the complex w plane, where w is root
of the quadratic equation

w+w&1= 4
7 (z+z&1+ 3

4) (33)

and z=(e4K&1)�2. For w on the unit circle, we write w=ei: and find in
analogous to (13) that R(:) is the area of the region

cos :> 1
9 [8 cos u(cos u+cos v)&7] (34)

Using the contours shown in Fig. 1b, we obtain

R(:)=
1
?2 |

,0

0
cos&1 _9 cos :+7

8 cos ,
&cos ,& d,, : # [0, :0]

=
1
2

&
1
?2 |

,1

,0

cos&1 _9 cos :+7
8 cos ,

&cos ,& d,, : # [:0 , ?] (35)
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where :0=2 cos&1(1�3) and

,0=cos&1 _3
2

cos
:
2

&
1
2&

(36)

,1=?&cos&1 _3
2

cos
:
2

+
1
2& , for cos

:
2

�
1
3

Note that we have R(:0)=3�8, R(?)=1�2.
Finally, using (10), we obtain

g(:)=
9 sin :

8?2 |
,0

0

d,

- (cos2 ,&cos2 ,0)(22&cos2 ,)
, : # [0, :0]

=
9 sin :

8?2 |
,1

,0

d,

- (cos2 ,&cos2 ,0)(cos2 ,1&cos2 ,)
, : # [:0 , ?]

(37)

where 2=[1+3 cos(:�2)]�2. After some manipulation and making use of
integral identities (A1) and (A2) derived in the Appendix, we obtain

g(:)=
3 - 3
8?2 |sin :| �sec

:
2

K(k), : # [0, :0]

=
3 - 3
8?2 } sin :

k } �sec
:
2

K(k&1), : # [:0 , ?] (38)

where

k2=
1

16 \sec
:
2

&1+\1+3 cos
:
2+

3

(39)

Note that g(:) diverges logarithmically at :=\:0 .

4. SIMPLE-QUARTIC ISING MODEL IN A FIELD i?�2

The two-dimensional Ising model can be solved when there is an
external magnetic field i?�2. The solution for the simple-quartic lattice was
first given by Lee and Yang(2) and a rigorous derivation of which was given
later by McCoy and Wu.(12) In 1988 Lin and Wu (13) gave a general pre-
scription for writing down the solution of the Ising model in a field i?�2 by
transcribing the solution in a zero field.
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The most general known solution of the Ising model in a field i?�2 is
a model with a generalized checkerboard type interactions.(14) Matveev and
Shrock(15) have also studied the zeroes for the simple-quartic Ising model
in a field i?�2.

For the simple-quartic lattice Lee and Yang(2) gave the free energy in
a field i?�2 as

f =i
?
2

+C+
1

16?2 |
?

&?
d% |

?

&?
d, ln[z+z&1+2&4 cos % cos ,] (40)

where C=(ln sinh 2K )�2, z=e&4K. Setting the argument of the logarithm
in (40) equal to zero we have &6�z+z&1�2 and hence from Corollary
2 we see that in the complex z plane zeroes of the partition function lie on
the unit circle |z|=1 and the line segment &3&2 - 2�z� &3+2 - 2 of
the real axis.

On the unit circle |z|=1 we write z=ei: and find the density

gcir(:)=
|sin :|

2?2 K(k) (41)

where

k2=(3+cos :)(1&cos :)�4 (42)

On the line segment, we write z=&e* with &2 ln(1+- 2)�*�
2 ln(1+- 2), we find the density

gline(*)=
|sinh *|

2?2 K(k) (43)

where

k2=(3&cosh *)(1+cosh *)�4 (44)

At the end points we have gline(\2 ln(1+- 2))=1�- 2 ?. The density
functions (41) and (43) are plotted in Fig. 4.

5. TRIANGULAR ISING MODEL IN A FIELD i?�2

The solution for the triangular model in a field i?�2 was first obtained
in ref. 13 by applying a transformation in conjunction with the solution of
a staggered 8-vertex model. Here, for completeness, we present an alternate
and more direct derivation.
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Fig. 4. Density of partition function zeroes for the simple-quartic lattice Ising model in a
field i?�2. (a) gcir(:) given by (41). (b) gline(z) given by (43).

Consider a triangular Ising lattice of N sites whose sites are arranged
as shown in Fig. 5a. After making use of the identity ei?_�2=i_, the parti-
tion function assumes the form

ZN=i N :
_i=\1

`
nn

eK_i _j `
j

_j (45)

where the first product is over all nearest neighbors, and the second
product over all sites. Now it is known that the triangular Ising model can
be mapped into an 8-vertex model on the dual of the square lattice, (16) also
of N sites. However, in order to properly treat the factor >j _j in (45), we
need to divide the N ``cells'' of the lattice, where a cell is shown in Fig. 5b,
into two sublattices, A and B, and associate two _j 's to each cell belonging
to one sublattice, say, B. This permits us to rewrite (45) as

ZN=i N :
_i=\1

`
cells

Wstg(_1 , _2 , _3 , _4) (46)

Fig. 5. (a) The triangular lattice. (b) A unit cell.
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where Wstg(_1 , _2 , _3 , _4) is a staggered Boltzmann weight given by

Wstg(_1 , _2 , _3 , _4)=eK(_1_2+_2_3+_3_1) for A

=(_1_2) eK(_1_2+_2_3+_3_1) for B (47)

The 8-vertex weights are

[|1 ,..., |8]=[e3K, e&K, e&K, e&K, e&K, e&K, e&K, e3K ]
(48)

[|$1 ,..., |$8]=[e3K, &e&K, &e&K, e&K, e&K, &e&K, e&K, &e3K]

Furthermore, from the mapping convention of Fig. 1 of ref. 17, we see that
the mapping between the spin and 8-vertex configurations is 2 to 1. This
leads to

ZN=2i NZN([|], [|$]) (49)

which is an exact equivalence between ZN and the partition function
ZN([|], [|$]) of the staggered 8-vertex model.

Now the weights (48) satisfy the free-fermion condition(16) for which
ZN([|], [|$]) has already been evaluated.(17) Using Eq. (19) of ref. 17 and
after some reduction, one obtains the following expression for the per-site
free energy,

f =i
?
2

+C+
1

4?2 |
?

0
d% |

?

0
d, ln[(1+e4K)2+4 cos ,(cos %+cos ,)] (50)

where C=[ln(2 sinh 2K )]�2. As a result, the partition function zeroes are
located at

(1+e4K)2=&4 cos ,(cos %+cos ,), 0�[%, ,]�? (51)

It is therefore convenient to consider the z=e4K plane. Since

&8�(1+e4K)2�1 (52)

using the Lemma we find that the zeroes are on the union of the segment
&2�z�0 of the real axis and the line segment z=&1+iy, &2 - 2� y�
2 - 2. The density of zeroes can be similarly determined. On the segment
z # [&2, 0] of the real axis, we find

g(z)= } (1+z)

2?2k - E(z) } K(k&1) (53)
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Fig. 6. Density of partition function zeroes for the triangular Ising model in a field i?�2.
(a) g(z) given by (53). (b) g( y) given by (54).

where E(z)=- &z(2+z) and k2=F[E(z)]. Particularly, we have g(0)=
g(&2)=1�- 3 ? and g(&1)=0. On the line segment z=&1+iy, we find

g( y)= } y

2?2
- H( y) } K(k) (54)

where H( y)=- 1+ y2 and k2=F[H( y)]. Particularly, we have g(0)=0
and g(\2 - 2)=1�- 6 ?. These results are plotted in Fig. 6.

We remark that in the complex x=e&4K plane considered in ref. 18,
the segment &2�z�0 of the real axis maps onto &��x�&1�2 while
the line segment z=&1+iy, &2 - 2� y�2 - 2, is mapped onto the
circular arc x&1= 1

2 (&1+ei%), %0=tan&1(4 - 2�7)�|%|�?. The density of
zeroes on the arc is found to be

garc(%)=
(1+cos %)2

2?2
- I(%) |sin3 %|

K(k) (55)

where I(%)=[2(1+cos %)]1�2�|sin %| and k2=F[B(i%)] with B(i%)=
[5&4 cos %]1�2. The densities at the end points of the arc are garc(\%0)=
3 - 3�2 - 2 ?.

6. THE HONEYCOMB AND KAGOME� LATTICES

The partition function of an Ising model on a planar lattice with inter-
actions K is proportional to the partition function on the dual lattice with
interactions K*, (19) where K and K* are related by

e&2K*=tanh K (56)
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Consequently, their partition function zeroes coincide when expressed in
terms of appropriate variables. Now the honeycomb and triangular lattices
are mutually dual, it follows that for the honeycomb lattice with interac-
tions K, in the complex

z= 1
2 (e4K*&1)=(cosh 2K&1)&1 (57)

plane, zeroes of the partition function coincides with those of the triangular
lattice partition function (22).

For the honeycomb Ising model in an external field i?�2, the free
energy can be obtained from that in a zero field via a simple transfor-
mation.(13, 18) Writing the partition function in the form of (45) and
replacing the product >i _i by >i _3

i , it is clear that, besides the factor i N,
the partition function is the same as that in a zero field with the
replacement

eK(_i _j&1) � (_ i_j ) eK(_i_j&1) (58)

or, equivalently, e2K � &e2K. It follows that in the complex

z=(&cosh 2K&1)&1 (59)

plane, the zeroes coincide with those of the triangular lattice partition
function (22).

The Ising model on the kagome� lattice with interactions K can be
mapped to that on an honeycomb lattice with interactions J, by applying
a star-triangle transformation followed by a spin decimation. The proce-
dure, which is standard(20) and will not be repeated here, leads to the
relation

e2J=(e4K+1)�2 (60)

As a result, we conclude that, in the complex

z=(cosh 2J&1)&1=2(1&tanh 2K )�tanh2 2K (61)

plane, zeroes of the kagome� partition function coincides with those of the
triangular lattice partition function (22). The evaluation of the kagome�
partition function in an external field i?�2 remains unresolved, however.
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APPENDIX. TWO INTEGRATION IDENTITIES

In this Appendix we derive the integration identities

I1=|
?�2

0

dt

- (1&a2 sin2 t)(b2+a2 sin2 t)
=

1

- a2+b2
K \a � 1+b2

a2+b2+ (A1)

I2=|
b

a

dx

- (1&x2)(x2&a2)(b2&x2)
=

1

b - 1&a2
K \1

b �
b2&a2

1&a2 + (A2)

which do not appear to have previously been given.
To obtain (A1), we expand the integrand using the binomial expansion

(1&x)&:= :
�

k=0

(:)k

k !
xk (A3)

where (:)k=:(:+1) } } } (:+k&1)=1 (:+k)�1 (:), and carry out the
integration term by term using the formula

2
? |

?�2

0
sin2m t dt=

(1�2)m

m!
(A4)

This yields

I1=
?
2b

:
�

j, k=0

(1�2) j (1�2)k (1�2) j+k

j ! k! ( j+k)!
a2j \&

a2

b2+
k

#
?
2b

F1 \1
2

;
1
2

,
1
2

; 1; a2, &
a2

b2+ (A5)

where the hypergeometric function of two variables is (cf. 9.180.1 of ref. 21)

F1(:; ;, ;$; #; x, y)= :
�

j=0

:
�

k=0

(:) j+k (;) j (;$)k

j ! k ! (#) j+k
x jyk (A6)

This leads to the integration formula (A1) after making use of the identity
(cf. 9.182.1 of ref. 21)

F1(:; ;, ;$; ;+;$; x, y)=(1& y)&: F \:, ;; ;+;$;
x& y
1& y+ (A7)

where F is the hypergeometric function (cf. 9.100 of ref. 21)

F(:, ;; #; z)= :
�

j=0

(:) j (;) j

j ! (#) j
z j (A8)
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and the identity (cf. 8.113.1 of ref. 21)

K(k)=
?
2

F \1
2

,
1
2

; 1; k2+ (A9)

The integral (A2) is obtained by introducing the change of variable
x2=(b2&a2) sin2 t+a2, which yields

I2=
1

1&a2 |
?�2

0

dt

- (1&c2 sin2 t)[a2�(1&a2)+c2 sin2 t)
(A10)

where c2=(b2&a2)�(1&a2). The integral I2 is now of the form of I1 and
(A2) is obtained after applying (A1).
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